

AGILE: A Phase 3, double-blind, randomized, placebocontrolled study of ivosidenib in combination with azacitidine in adults with newly diagnosed acute myeloid leukemia and an *IDH1* mutation

Pau Montesinos,^{1,2} Christian Recher,^{3,4} Ewa Zarzycka,⁵ Vadim Doronin,⁶ Derek McCulloch,⁷ Susana Vives Polo,⁸ Rodrigo T. Calado,⁹ Jun Ho Jang,¹⁰ Yasushi Miyazaki,¹¹ Jianxiang Wang,¹² Diego A. Gianolio,¹³ Scott R. Daigle,¹³ Thomas Winkler,¹³ Vickie Zhang,¹³ Peter Paschka¹⁴

¹Hospital Universitari i Politècnic La Fe, Valencia, Spain; ²CIBERONC, Instituto Carlos III, Madrid, Spain; ³Institut Universitaire du Cancer de Toulouse Oncopole, CHU de Toulouse, Toulouse, France; ⁴Université de Toulouse III, Toulouse, France; ⁵Klinika Hematologii i Transplantologii, Uniwersyteckie Centrum Kliniczne, Gdansk, Poland; ⁶City Clinical Hospital #40, St Petersburg, Russian Federation; ⁷Royal Prince Alfred Hospital, Camperdown, Australia; ⁸ICO Hospital Universitario Germans Trias i Pujol, Josep Carreras Research Institut, Universitat Autònoma de Barcelona, Badalona, Spain; ⁹Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil; ¹⁰Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; ¹¹Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan; ¹²Institute of Hematology & Hospital of Blood Disease – Peking Union Medical College, Beijing, China; ¹³Agios Pharmaceuticals, Inc., Cambridge, MA, USA; ¹⁴University of Ulm, Ulm, Germany

BACKGROUND

IDH1 mutations and ivosidenib

- Acute myeloid leukemia (AML) has a poor prognosis, and is associated with a high risk of relapse and limited overall survival^{1–3}
- Advanced age and comorbidities often preclude curative treatment approaches in elderly patients with AML
- Mutations in isocitrate dehydrogenase 1 (*IDH1*) occur in ~6–10% of AML cases^{4–7}
- The mutant IDH1 (mIDH1) enzyme has gain-of-function activity, which catalyzes the reduction of alpha-ketoglutarate (α-KG) to the oncometabolite D-2-hydroxyglutarate (2-HG)⁸
- 2-HG accumulation results in metabolic dysregulation and inhibition of α-KG–dependent enzymes, causing epigenetic dysregulation and a block in cellular differentiation, leading to oncogenesis^{9–11}
- Ivosidenib (AG-120) is a first-in-class, oral, potent, targeted, small-molecule inhibitor of the mIDH1 enzyme that is being tested in multiple clinical studies
- Ivosidenib is approved in the US for the treatment of AML with a susceptible *IDH1* mutation as detected by an FDA-approved test in adults with newly diagnosed AML who are ≥75 years of age or who have comorbidities that preclude the use of intensive induction chemotherapy and in adults with relapsed or refractory AML
 In a phase 1 study of patients with m*IDH1* advanced hematologic tumors, including AML (NCT02074839), ivosidenib showed robust clinical activity and a manageable safety profile as a single agent

 The overall response rate (ORR) was 54.5% and the complete remission (CR) rate was 30.3% in patients with newly diagnosed m*IDH1* AML not eligible for intensive chemotherapy¹²

OBJECTIVE OF PHASE 3 AGILE STUDY

 To evaluate the efficacy and safety of ivosidenib + azacitidine versus placebo + azacitidine in adults with previously untreated mIDH1 AML who are not candidates for intensive treatment

PHASE 3 AGILE STUDY DESIGN

- AGILE is a global, phase 3, multicenter, randomized, double-blind, placebo-controlled trial in adult patients with previously untreated mIDH1 AML who are not candidates for intensive therapy
- ClinicalTrials.gov NCT03173248
- Study design is shown in Figure 2
 Central or local confirmation of m*IDH1* status is required for study entry

Preclinical rationale for combining ivosidenib and azacitidine

- The hypomethylating agent azacitidine is a treatment option for patients with AML who are unable to tolerate intensive induction chemotherapy
 - Azacitidine treatment has been found to prolong overall survival versus conventional care regimens in older patients with newly diagnosed AML¹³
- In a preclinical study using an mIDH1 cell-line model, concurrent treatment with ivosidenib and azacitidine resulted in enhanced cellular differentiation and apoptosis compared with either agent alone¹⁴

Preliminary evidence for the safety and efficacy of the ivosidenib and azacitidine combination

Study design and methods

- A phase 1b study of ivosidenib in combination with azacitidine in patients with untreated mIDH1 AML is ongoing (NCT02677922)
- Demographics: median age 76 years (range 61–88), 12 patients (52%) were ≥75 years of age, and 12 of 23 were female. *De novo* and secondary AML were present in 15 (65%) and 8 (35%) patients, respectively. Cytogenetic risk status was intermediate in 65%, poor in 22%, and failed/missing in 13%
- 23 patients were treated with ivosidenib 500 mg once daily (QD) + azacitidine 75 mg/m²/day subcutaneously (SC) on Days 1–7 in a 28-day schedule¹⁵

Results

- As of 19February2019, 10 patients (43.5%) remained on study treatment. Patients had been treated for a median of 15 cycles (range, 1–30), and adverse events were consistent with the single-agent experience for both agents. Four cases of IDH differentiation syndrome were reported; of these, three were deemed to be serious adverse events, but all four cases resolved
- Objective responses were observed in 18 of 23 (78.3%) patients, with 14 (60.9%) achieving a CR and 2 (8.7%) achieving CR with partial hematologic recovery (CRh) (Figure 1 and Table 1)
- Preliminary mIDH1 clearance in bone marrow mononuclear cells was observed in 69% of patients (11 of 16) with CR or CRh, including 71% (10 of 14) with CR (Table 2)

Table 1. Phase 1b study: response rates

Response parameter	All patients (N = 23)
CR, n (%) [95% CI]	14 (60.9) [38.5, 80.3]
Time to CR, median (range), months	3.7 (0.8–15.7)
Duration of CR, median [95% CI], months	NE [9.3, NE]
CR+CRh, ^a n (%) [95% Cl]	16 (69.6) [47.1, 86.8]
Time to CR+CRh, median (range), months	2.8 (0.8–11.5)
Duration of CR+CRh, median [95% CI], months	NE [12.2, NE]
CRh, n (%)	2 (8.7)
ORR, n (%) [95% CI]	18 (78.3) [56.3, 92.5]
Time to response, median (range), months	1.8 (0.7–3.8)
Duration of response, median [95% CI], months	NE [10.3, NE]
Best response ^b	
CR, n (%) [95% Cl]	14 (60.9) [38.5, 80.3]
CRi/CRp, n (%)	2 (8.7)
MLFS, n (%)	2 (8.7)
Overall survival, 12-month rate, % [95% CI] ^c	82.0 [58.8, 92.8]
Duration of follow-up, median (range), months	16.1 (1.3–31.7)

An independent data monitoring committee will monitor the data throughout the study

SUMMARY AND CURRENT STATUS

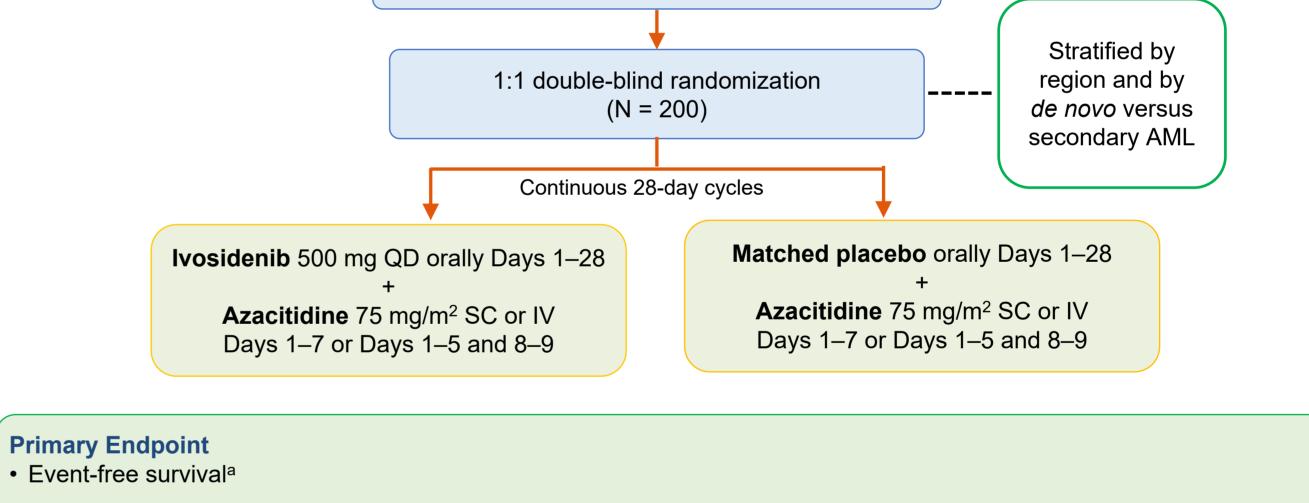
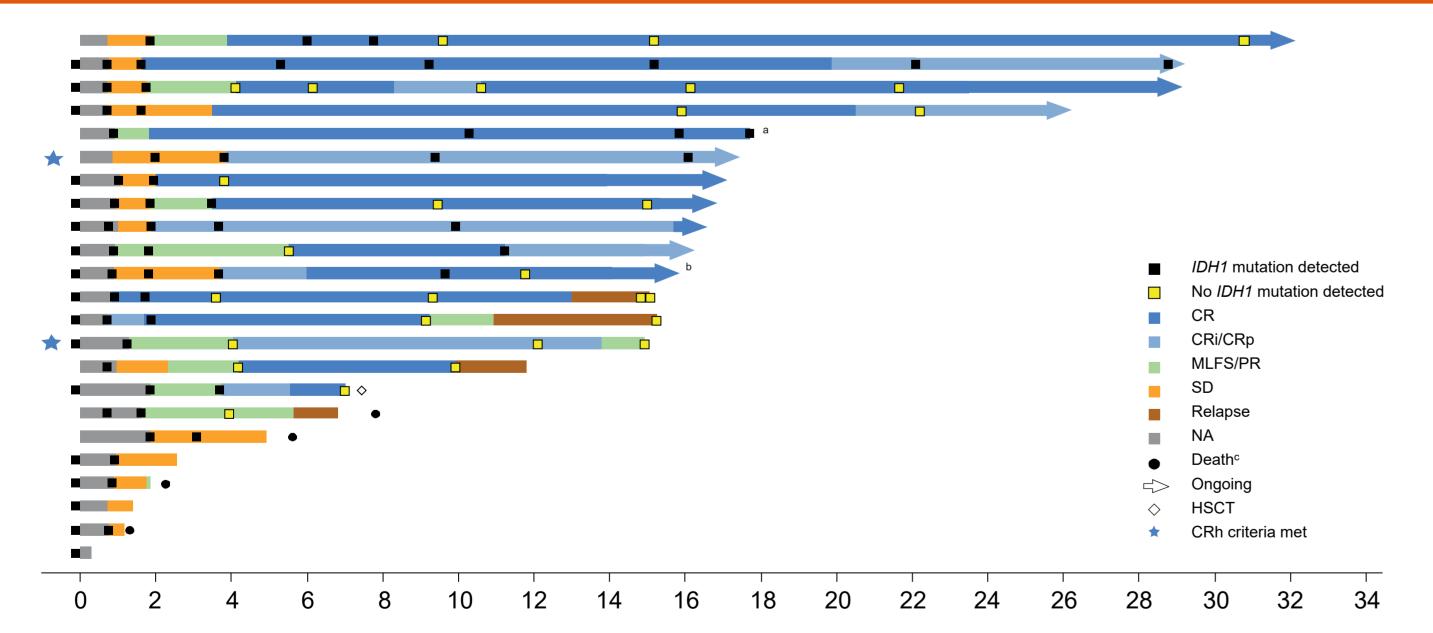

- The favorable safety profile and encouraging clinical activity observed in the phase 1b ivosidenib + azacitidine combination study of the treatment of mIDH1 AML (CR rate 60.9% and CRh rate 8.7%) support the development of this combination in the phase 3 AGILE study
- The active phase 3 AGILE study is currently recruiting in 20 countries, with a total of 172 study centers in North America, South America, Asia, and participating in the study
- Further information is available at https://clinicaltrials.gov/ct2/show/NCT03173248
- Contact medinfo@agios.com

Figure 2. AGILE study design

Key inclusion criteria Key exclusion criteria Prior AML therapy (excluding hydroxyurea) • At least 1 of the following: a. \geq 75 years old Heart-rate corrected QT interval using Fridericia's method ≥ 470 msec or any other factor that increases the risk of QT prolongation or arrhythmic events b. ECOG PS = 2• Extramedullary disease alone (no detectable bone marrow and no detectable c. Severe cardiac disorder (eg, LVEF \leq 50%) peripheral blood AML) d. Severe pulmonary disorder • Patients who previously have received an experimental agent for MDS may e. Creatinine clearance <45 mL/minute not be randomized until a washout period of ≥ 5 half-lives has elapsed since f. Bilirubin > 1.5 times upper limit of normal last dose · Patients with antecedent hematologic disorder (eg, Subjects with a known medical history of progressive multifocal MDS, MPN) if not pretreated with an mIDH1 inhibitor leukoencephalopathy or HMA

Eligible patients with untreated mIDH1 AML

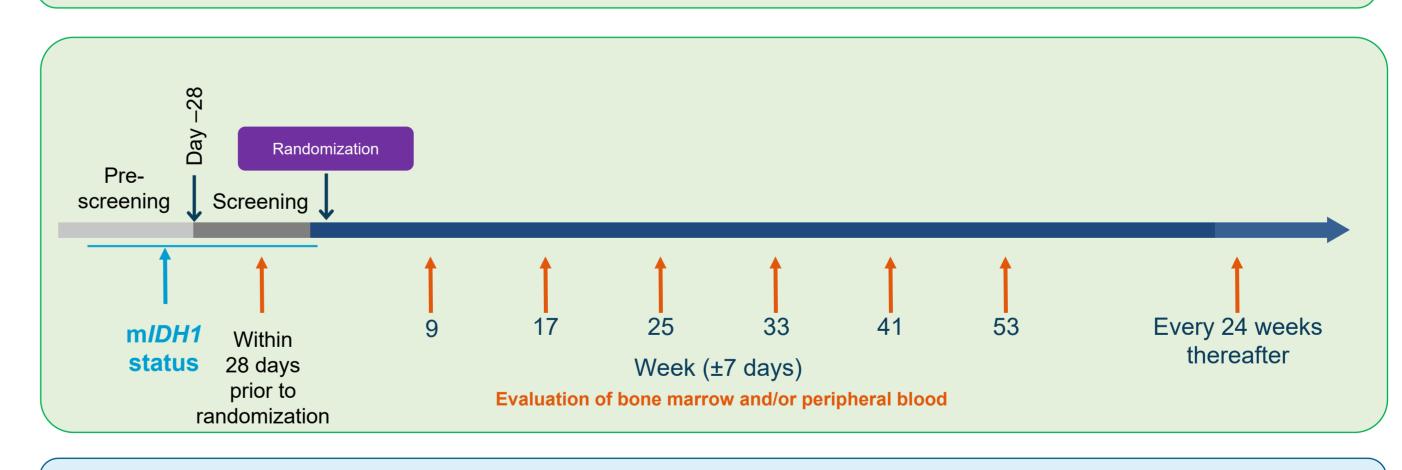

^aSponsor derived

^bModified International Working Group criteria

^cDetermined using Kaplan–Meier method

CI = confidence interval; CR = complete response; CRh = CR with partial hematologic recovery; CRi/CRp = CR with incomplete hematologic or platelet recovery; MLFS = morphologic leukemia-free state; NE = not estimable; ORR = overall response rate

Figure 1. Phase 1b study: treatment duration and best overall response



Secondary Endpoints

- Overall survival
- Rate of CR
- Rate of CR+CRh^b
- ORR^c

Other Secondary Endpoints

- Time to response and duration of response
- Safety
- Transfusion requirements
- Rates of infection and hospitalization
- Quality of life (EORTC QLC-C30 and EQ-5D-5L)

Statistics The study has 80% power for event-free survival

Treatment duration (months)

^aPatient continued on commercially available ivosidenib; ^bPatient had m*IDH1* clearance in PBMCs only (BMMCs not available); all other patients had m*IDH1* clearance in both BMMCs and PBMCs; ^cOnly deaths occurring within 60 days of last dose were included BMMCs = bone marrow mononuclear cells; CR = complete response; CRi = CR with incomplete hematologic recovery; CRp = CR with incomplete platelet recovery;

HSCT = hematopoietic stem cell transplant; IDH1 = isocitrate dehydrogenase 1; MLFS = morphologic leukemia-free state; NA = not assessed; PBMCs = peripheral blood mononuclear cells; PR = partial remission; SD = stable disease

Table 2. Phase 1b study: *IDH1* mutation clearance^a by best overall response (BEAMing digital PCR)

	BMMCs ^b (n = 21)	PBMCs (n = 23)
	n/N (%)	
CR/CRh	11/16 (69)	12/16 (75)
CR	10/14 (71)	11/14 (79)
CRh	1/2 (50)	1/2 (50)
Non-CR/CRh responders	1/2 (50)	1/2 (50)
Nonresponders	0/3 (0)	0/5 (0)

Using an m*IDH1* variant allele frequency cutoff of 1%, mutation clearance was achieved in 15/16 (94%) patients with CR/CRh (13/14 [93%] with CR and 2/2 [100%] with CRh) ^aReduction in m*IDH1* variant allele frequency to below the limit of detection of 0.02-0.04% ($2-4 \times 10^{-4}$) for at least one on-study timepoint; ^bTwo nonresponding patients had variant allele frequency data available from PBMCs only. BMMC = bone marrow mononuclear cells; CR = complete remission; CRh = complete remission with partial hematologic recovery; IDH1 = isocitrate dehydrogenase; PCR = polymerase chain reaction.

(ivosidenib + azacitidine vs placebo + azacitidine arm), with a one-sided alpha of 0.025

^aThe time from randomization until treatment failure, relapse from remission, or death from any cause, whichever comes first; ^bCRh is defined as CR with partial recovery of peripheral blood counts (< 5% bone marrow blasts, platelets > 50,000/µL, and ANC > 500/µL) and will be derived by the sponsor; ^cIncludes CR, CRi/CRp, partial response, and MLFS

AML = acute myeloid leukemia; ANC = absolute neutrophil count; CR = complete remission; CRi/CRh = CR with incomplete hematologic or platelet recovery; ECOG = Eastern Cooperative Oncology Group; EORTC QLQ-C30 = European Organisation for Research and Treatment of Cancer quality of life questionnaire for cancer patients; EQ-5D-5L = EuroQol 5-dimension 5-level health-related quality of life questionnaire; HMA = hypomethylating agent; IV = intravenously; LVEF = left ventricular ejection fraction; MDS = myelodysplastic syndrome; MLFS = morphologic leukemia-free state; MPN = myeloproliferative neoplasms; ORR = overall response rate; PS = performance score; QD = once daily; SC = subcutaneous; WHO = World Health Organization

Acknowledgments

We would like to thank the patients taking part in this study.

Disclosures

This study is funded by Agios Pharmaceuticals, Inc. These data were previously presented at the *61st American Society of Hematology (ASH) Annual Meeting*, December 7–10, 2019, Orlando, FL, USA. **PM:** Abbvie, Daiichi Sankyo, Astellas, Agios, Tolero Pharmaceuticals, Glycomimetics and Forma Therapeutics – consultancy; Celgene, Pfizer, Abbvie, Daiichi Sankyo, Astellas, Novartis, Janssen – advisory boards; Celgene, Pfizer, Abbvie, Daiichi Sankyo, Astellas, Novartis, Janssen, Teva – research funding and speakers bureau. **CR:** Celgene, Amgen, Novartis, Daiichi Sankyo – consultant, travel expenses, and research funding; Jazz, Abbvie, Janssen, Astellas, Macrogenics – consultant. **EZ, VD, DM, SVP, RTC**: no conflict of interest. **JJ**: Novartis, Amgen – honoraria. **YM**: Novartis, Kyowa Kirin, Chugai, Otsuka, Astellas, Celgene, Nippon Shinyaku, Sumitomo Dainippon Pharma – honoraria. **JW**: Abbvie – consultancy. **DAG, SRD, TW, VZ**: Agios – employment and stockholder. **PP**: Agios, Astex Pharmaceuticals, Astellas Pharma, Celgene, Jazz Pharmaceuticals, Novartis, Otsuka, Pfizer, Sunesis Pharmaceuticals – consultancy; Astellas Pharma, Agios, Jazz Pharmaceuticals, Novartis, Pfizer, Jazz Pharmaceuticals (Inst) – speakers bureau; AbbVie – travel, accommodations or expenses; Amgen, Janssen Oncology – other; BerGenBio ASA – research funding. Editorial assistance was provided by Helen Varley, PhD, CMPP, Excel Medical Affairs, Horsham, UK, and supported by Agios.

References

Walter RB et al. Leukemia 2015;29:312–20. 2. NCI SEER Cancer Stat Facts – Acute Myeloid Leukemia. https://seer.cancer.gov/statfacts/html/amyl.html. Accessed Mar 14, 2018. 3. Mangan J, Luger S. Ther Adv Hematol 2011;2:73–82. 4. Mardis ER et al. N Engl J Med 2009;361:1058–66. 5. Ward PS et al. Cancer Cell 2010;17:225–34. 6. Patel KP et al. Am J Clin Pathol 2011;135:35–45.
 DiNardo CD et al. Am J Hematol 2015;90:732–6. 8. Dang L et al. Nature 2009;462:739–44. 9. Lu C et al. Nature 2012;483:474–8. 10. Saha SK et al. Nature 2014;513:110–4. 11. Xu W et al. Cancer Cell 2011;19:17–30. 12. Roboz GJ et al. Blood 2020;13:463–71.13. Dombret H et al. Blood 2015;126:291–9. 14. Yen K et al. 2018 AACR Annual Meeting: Abstr 4956. 15. DiNardo CD et al. Clin Lymphoma Myeloma Leuk 2019;19(Suppl 1):S217–8. Abstr AML-197.

www.iachlive.cme-congresses.com

3rd International Academy for Clinical Hematology (IACH) Annual Meeting, October 1–3, 2020